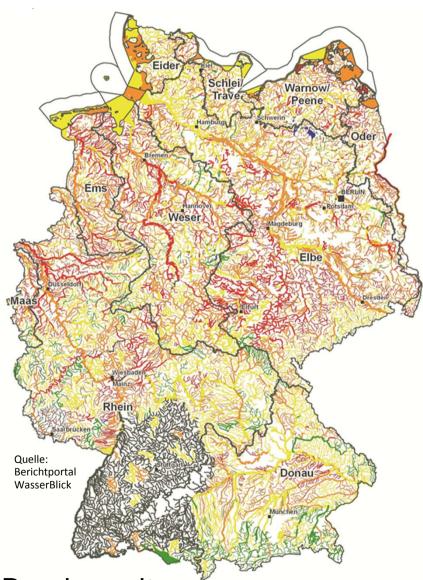


world of biodiversity

Strategien zur Erfolgskontrolle und zur Optimierung von Fließgewässerrenaturierungsmaßnahmen

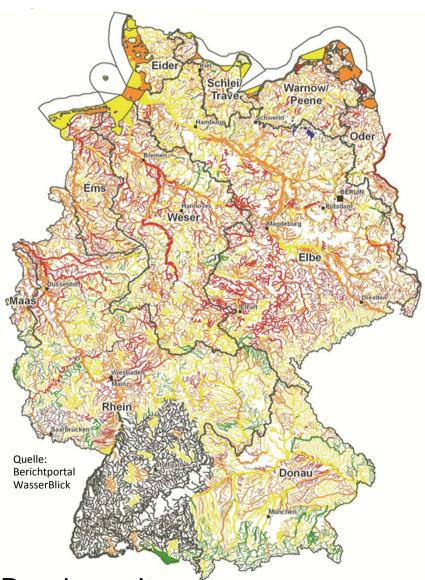
Andrea Sundermann, Armin Lorenz, Michael Nohl



Gewässerökologischer Zustand

Umweltbundesamt:

"Im Jahr 2015 werden 10 Prozent der deutschen Bäche und Flüsse in einen "guten" oder "sehr guten" ökologischen Zustand [...] eingestuft."



Ursachen / Stressoren:

- Verbauung, Begradigung, unterbrochene Durchgängigkeit und
- die zu hohen [...] Nährstoffbelastungen.

Gewässerökologischer Zustand

Umweltbundesamt:

"Im Jahr 2015 werden 10 Prozent der deutschen Bäche und Flüsse in einen "guten" oder "sehr guten" ökologischen Zustand [...] eingestuft."

Ursachen / Stressoren:

- Verbauung, Begradigung, unterbrochene Durchgängigkeit und
- die zu hohen [...] Nährstoffbelastungen.

Bundesweite Bestandsaufnahme

Stressoren: Verbauung, Begradigungen, unterbrochene Durchgängigkeit

> 50 Renaturierungsprojekte untersucht

Morphologie

Laufkäfer

Auen-Vegetation

Fische

Wasserpflanzen

Invertebraten

Renaturierung: Morphologie / Struktur

Nidda bei Bad Vilbel (HE)

Deutlich positive Veränderung: Struktur viel diverser

Renaturierung: Morphologie / Struktur

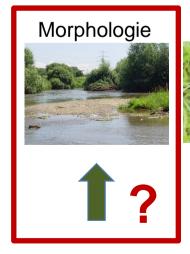
Gartroper Mühlenbach (NRW)

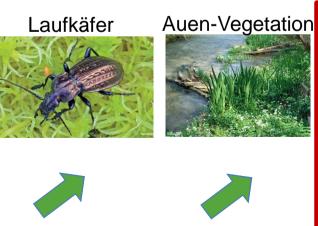
Deutlich positive Veränderung: Struktur viel diverser

Renaturierung: Morphologie / Struktur

Lahn bei Cölbe (He)

Deutlich positive Veränderung: Struktur viel diverser




Stressoren: Verbauung, Begradigungen, unterbrochene Durchgängigkeit

Erfolgskontrolle von Renaturierungsmaßnahmen

Neue Methode: Zeigt bereits kleinere Veränderungen an

https://www.umweltbundesamt.de/publikationen/ strategien-zur-optimierung-von-fliessgewaesser

Struktur des Bewertungssystems

Modul 3: Naturschutz, Kultur, Ökonomie

Zusatzmodul (optional)

Modul 2b: Schlüsselindikatoren

Modul 2a: Ökologische Bewertung

Aufbaumodule

nach Zielerreichung Basismodule

Modul 1b: Schlüsselhabitate

Modul 1a: Gewässerstruktur

Basismodule (obligatorisch)

Risikoabschätzung

Modul 1a: Gewässerstruktur

GSG-Parameter	GSG-Klassen	Entwi	icklungsziel laut Hymo-Steckbrief	Einschätzung
	Gewässerten 9: Sil	ikatische fein-	bis grobmaterialreicht Mittelgebirgsflüsse	
Modul 1a	Ergebnisse des begleitend		Guter ökologischer Zustand (Kernlebensraum)	Prognose
Gewässerstruktu	7 6 5 4	3 2 1	Ausprägungen gemäß hydromorphologischem Steckbrief	_ = +
1. Laufentwicklung				
1.1 Laufkrümmung			gestreckt bis stark geschwungen	
1.3 Längsbänke			wenige bis mehrere	
2. Längsprofil				
2.1 Querbauwerke			keine	
2.5 Strömungsdiversität			mäßig bis groß	
3. Sohlstruktur				
3.2 Substratdiversität			groß	
3.4 bes. Sohlstrukturen			mehrere	
4. Querprofil				
4.4 Breitenvarianz			mäßig bis groß	
5. Uferstruktur				
5.1 Uferbewuchs			durchgehender Uferstreifen mit lebensraumtypischem Wald bzw. lebensraumtypischen Biotopen	
5.3 bes. Uferstrukturen			wenige bis mehrere	
6. Gewässerumfeld				
6.2 Gewässerrandstreifen			durchgehender Gewässerrandstreifen (beidseits) mit lebensraumtypischen Biotopen	12

Morphologie Steckbrief

Typ 9: Silikatische, fein- bis grobmaterialreiche Mittelgebirgsflüsse

Guter ökologischer Zustand (Kernlebensraum)

Kurzbeschreibung

Im Kernlebensraum weisen die grobmaterialreichen, silikatischen Mittelgebirgsflüsse überwiegend einen gestreckten bis stark geschwungenen Lauf mit Nebengerinnen auf (in Engtälern und in gefällearmen Sohlentälern auch ohne Nebengerinne).

Die Sohle besteht überwiegend aus dynamischem Grobmaterial wie Schotter, Steinen und Kies. Untergeordnet gibt es Feinsubstrate. Der Totholzanteil am Sohlsubstrat beträgt 2 bis 5 %. Die Sohle lässt eine große bis sehr große Deckung mit Makrophyten erkennen.

Insgesamt ist die Sohle vielfältig strukturiert und weist eine hohe Substratdiversität auf. Es gibt wenige bis mehrere besondere Lauf- und Uferstrukturen bei mäßiger bis großer Tiefen- und Breitenvarianz. Es finden sich häufig die für diesen Gewässertvo charakteristischen vegetationsfreien Mitten- und Uferbänke.

Es treten höchstens geringe Sohl- und Uferbelastungen auf. Bauwerke und andere Veränderungen im und am Gewässer beeinträchtigen den Geschiebehaushalt sowie die longitudinale und laterale Durchgängigkeit für die aquatischen Lebensgemeinschaften gar nicht oder nur geringfügig.

Die Ufer werden von einem Uferstreifen mit lebensraumtypischen Gehölzen begleitet und teilweise beschattet. Die überwiegend von Hochflutrinnen und Altgewässern geprägte Aue wird regelmäßig überflutet.

Ausprägungen der Einzelparameter

Grundlagendaten	Guter ökologischer Zustand (Kernlebensraum)
Gewässerlage	freie Landschaft (oder Ortslage)
Einzugsgebietsgröße	100-1.000 km²
Taiform	gefällereiche Engtäler, Sohlentäler oder Mäandertäler; gefällearme Sohlentalabschnitte
Auentyp, EZG > 1.000 km²	nicht reievant

	HP	Nr.	Einzelparameter	Guter ökologischer Zustand (Kernlebensraum)
		1.1	Laufkrümmung	gestreckt bis stark geschwungen"
	. 8	1.2	Krümmungserosion	vereinzeit schwach bis vereinzeit stark*
	불통	1.3	Längsbänke	wenige bis mehrere
	ĮŽ	1.4	Bes. Laufstrukturen	wenige bis mehrere
rstruktur	e	neu	Lauftyp	überwiegend mit Nebengerinnen (9a, 10), nur bei sehr schmalem Taiboden oder geringem Gefälle unverzweigt (9a, 11)
8		2.1	Querbauwerke	kein
🝍	Ę	2.2	Verrohrung/Überbauung	keine
8	Į Š	2.3	Rückstau	kein
	뻍	2.4	Querbänke	wenige bis mehrere
	3	2.5	Strömungsdiversität	māßiq bis groß
	M	2.6	Tiefenvarianz	māßig bis groß
		2.7	Ausleltung	keine

^{*} Ausprägung in Abhängigkeit von Taiform und Gefälle

Einzeiparameter mit den potenziell stärksten Effekten auf die biologischen Qualitätskomponenten (Makrozoobenthos, Fische, Makrophyten)

9a - gefällereiche Engfäler sowie Mäanderfäler oder Sohienfäler mit schmalem Migrationskorridor

10 - gefällereiche Sohlentäler und Mäandertäler mit ebener, breiter Talsohle

11 - gefällearme Sohlentalabschnitte mit ebenem Talboden

HP - Hauptparameter

Modul 1a: Gewässerstruktur

GSG-Parameter	GSG-Kla	ssen	Entw	icklungsziel laut Hymo-Steckbrief	Eiı	nschät	zung
	Gawässart	9. Silikati	ische fein-	bis grobmaterialreiche Mittelgebirgsflüsse			
Modul 1a	Ergebnisse des b			Guter ökologischer Zustand (Kernlebensraum)		Prognose	
Gewässerstruktur	7 6 5	4 3	2 1	Ausprägungen gemäß hydromorphologischem Steckbrief	-	=	+
1. Laufentwicklung					1		
1.1 Laufkrümmung				gestreckt bis stark geschwungen			
1.3 Längsbänke				wenige bis mehrere			
2. Längsprofil							
2.1 Querbauwerke				keine			
2.5 Strömungsdiversität	2.5 Strömungsdiversität		mäßig bis groß				
3. Sohlstruktur							
3.2 Substratdiversität				groß			
3.4 bes. Sohlstrukturen				mehrere			
4. Querprofil							
4.4 Breitenvarianz				mäßig bis groß			
5. Uferstruktur							
5.1 Uferbewuchs				durchgehender Uferstreifen mit lebensraumtypischem Wald bzw. lebensraumtypischen Biotopen			
5.3 bes. Uferstrukturen				wenige bis mehrere			
6. Gewässerumfeld							
6.2 Gewässerrandstreifen				durchgehender Gewässerrandstreifen (beidseits) mit lebensraumtypischen Biotopen			14

Modul 1a: Gewässerstruktur - Beispiel

N	Iodul 1a	Erg	ebnisse	e des b	egleite	nden N	fonito:	ing*	Guter ökologischer Zustand (Kernlebensraum)
G	ewässerstruktur 💮 💮	7	6	5	4	3	2	1	Ausprägungen gemäß hydromorphologischem Steckbrief
1.	Laufentwicklung	ę.	877	70 ->		-00			
	1.1 Laufkrümmung			8				3	gestreckt bis stark geschwungen
	1.3 Längsbänke		0		X				wenige bis mehrere
2.	Längsprofil						200		
	2.1 Querbauwerke					0	X		keine
	2.5 Strömungsdiversität			0		X			mäßig bis groß
3.	Sohlstruktur								
	3.2 Substratdiversität		0			X			groß
	3.4 bes. Sohlstrukturen		0		X			1	mehrere

O: Situation vor der Renaturierung

X : Situation nach der Renaturierung

Struktur des Bewertungssystems

Modul 3: Naturschutz, Kultur, Ökonomie

Zusatzmodul (optional)

Modul 2b: Schlüsselindikatoren

Modul 2a: Ökologische Bewertung

Aufbaumodule

nach Zielerreichung Basismodule

Modul 1b: Schlüsselhabitate

Modul 1a: Gewässerstruktur

Basismodule (obligatorisch)

Risikoabschätzung

Modul 1b: Schlüsselhabitate

	HMADELAN								s grobmaterialreici	THE STATE OF THE S	Anna Caraca Cara		1 5 5 5 5	
	odul 1b	tr	gebnis:	se des l	begleit	tenden	Monitor	ing"		Zustand (Kernleb			Pro	gnose
	:hlüsselhabitate	-7	6	5	4	3	2	1	Ausprägungen gemä,	B hydromorphologisa	chem Stecki	brief		
So	hlhabitate		-	96	1	44	Ÿ	Ť					- 6	-
	Feinsediment (Psammopelal)				$\perp \! \! \perp$				Anteil < 10 % in durc in strömungsberuhig		Contract of the contract of th			
	Kies (Akal)							100	- keine spezifischen	Angaben -				
	Totholz (<i>Xylal</i>)								Anteil gering (2-5 %)				
	grobes organisches Material (CPOM)								- keine spezifischen	Angaben -				
	Makrophyten (<i>Phytal</i>)								Anteil Xylal		Typ 5	Тур 9	Typ 1/	Тур 15
Be	esondere Gerinnestrukturen (G) /	Auenhal	bitate (A)	77.	72			Alltell Aylal	I	тур э	турэ	17014	Түртэ
	Bewertung					$\parallel \parallel$			sehr groß	> 25 %	1	1	1	1
- 1	Ĭ	0	X	8		28	*:	\$: 	groβ	> 10 - 25 %	1	1	1	1
	→ Nebengerinne			D-	. :		-		11-					
G	→ Anastomosen			Do	tier	ung	sklas	sen	mäβig	>5-10%	3	1	3	1
-3	→ Hochflutrinnen			d a	bei	Vorha	ndensein		gering	>2-5%	4	3	4	3
	→ Altwässer/Stillgewässer			£			reuzen		sehr gering	>0-2%	5	5	5	5
A	→ Altarme								fehlend	0 %	7	7	7	7
	→ Randsenken/Moore									•	•			1/

Struktur des Bewertungssystems

Modul 3: Naturschutz, Kultur, Ökonomie

Zusatzmodul (optional)

Modul 2b: Schlüsselindikatoren

Modul 2a: Ökologische Bewertung

Aufbaumodule

nach Zielerreichung Basismodule

Modul 1b: Schlüsselhabitate

Modul 1a: Gewässerstruktur

Basismodule (obligatorisch)

Risikoabschätzung

Modul 2a: Ökologische Bewertung

	Gewässerty	p 9: Silikatisch	e, fein- bis (grobmateria	Ireiche Mittelg	ebirgsflusse			
Modul 2a	Erge	bnisse	Sco	res	Ziel	Reaktion auf	bishe	erige Entwic	klung
Ökologische Bewertung / MZB	0	X	0	X		Renaturierung	- (0)		- 50
Gesamtbewertung						3		· ·	37
Multimetrischer Index					0,60	Zunahme			
Core Metrics	*								
Faunaindex Typ 09	16			, and the second	0,60	Zunahme			
Anteil EPT (HK)					0,60	Zunahme			
Anteil Metarhithral	- 10				0,60	Zunahme			
Taxazahl EPTCB0				Į.	0,60	Zunahme			
e <mark>rgänzende Metriks</mark> (f = Ernährungspräfe	renzen; h = Hab	itatpräferenzen)	å 8	100					8
Saprobienindex						Abnahme			
Diversität (Margalef)			Ĩ			indifferent ¹			
Rheoindex (HK)			,			indifferent ²			
Anteil Holzfresser						Zunahme			
Anteil Zerkleinerer			Ĩ			Zunahme			
Anteil Filtrierer						Abnahme			
Anteil Psammal-Besiedler						Zunahme			
Anteil CPOM-Besiedler						Zunahme			

Modul 2a: Ökologische Bewertung

M	odul 2b	Ergel	onisse	Scores	/ Klassen	Ziel	Reaktion auf	bishe	rige Entwic	klung
Ö	kologische Bewertung / Fische	0 X		0	X	1-	Renaturierung	=)		+
Ge	esamtbewertung				3 83	11 11 2				
	Gesamtmittel fiBS					2,51	Zunahme			
Q	ualitätsmerkmale						8) () ()			*
1	Arten-/Gildeninventar			114		2,51	Zunahme			
2	Artenabundanz/Gildenverteilung					2,51	Zunahme			
3	Altersstruktur					2,51	Zunahme			
4	Migration					3	Zunahme			
5	Fischregion					3	Zunahme			
6	dominante Arten					3	Zunahme			
er	gänzende Metriks									
	Fischregionsindex (FRI)						indifferent ⁱ			
	Abweichung von FRI Referenz						Abnahme			*
	Leitartenindex						Zunahme			(c
	Community Dominance Index						Abnahme			

Modul 2b

Schlüsselindikatoren

Unio crassus

Baetis lutheri

Leuctra sp.

Hydraena sp.

Ecdyonurus dispar

Ecdyonurus insignis

Esolus parallelepipedus

Allogamus auricollis

Micrasema setiferum

Brachycentrus maculatus

Makrozoobenthos (gemäß Typsteckbri

Margaritifera margaritifera

Fischfauna Äsche

Barbe

Hasel

Ukelei

Modul 2b: Schlüsselindikatoren

Gemäß Typsteckbrief

bisherige Entwicklur

Struktur des Bewertungssystems

Modul 3: Naturschutz, Kultur, Ökonomie

Zusatzmodul (optional)

Modul 2b: Schlüsselindikatoren

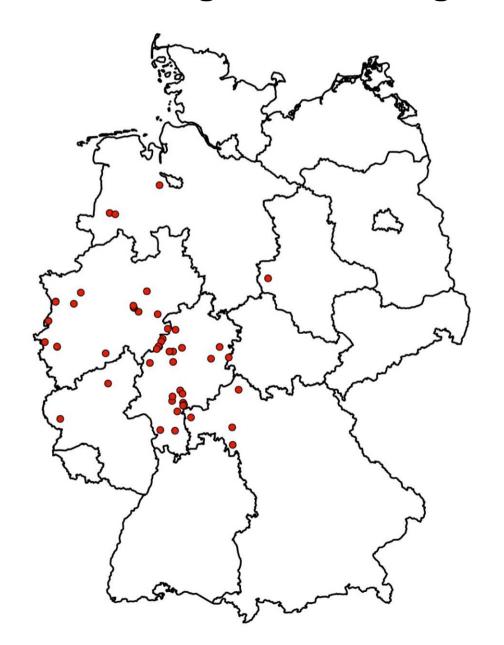
Modul 2a: Ökologische Bewertung

Aufbaumodule

nach Zielerreichung Basismodule

Modul 1b: Schlüsselhabitate

Modul 1a: Gewässerstruktur


Basismodule (obligatorisch)

Risikoabschätzung

Test: Erfolgsabschätzung

- 30 renaturierte Abschnitte
- große Maßnahmen
- hauptsächlich Hessen und NRW Typen 5, 9 und 15
- GSG-Daten aus Länder-Datenbanken
- Schlüsselhabitate aus MHS-Bögen
- MZB-Metrics aus Asterics (4.04)
- Fischdaten aus fiBS (8.1.1)

Modul 1a: Gewässerstruktur

Zielerreichungsquote

	n	Lauf- krümmung		Strömungs- diversität	Substrat- diversität	bes. Sohl- strukturen		•	bes. Ufer- strukturen	Gew. Rand- streifen
Typ 5	8	100,0%	100,0%	75,0%	25,0%	87,5%	87,5%	37,5%	87,5%	100,0%
Typ 9	20	100,0%	100,0%	80,0%	30,0%	70,0%	25,0%	25,0%	80,0%	65,0%
Тур 15	1	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	0,0%	100,0%	100,0%
MW	29	100,0%	100,0%	79,3%	31,0%	75,9%	44,8%	27,6%	82,8%	75,9%

Verbesserungsquote

	n	Lauf- krümmung			- Substrat- diversität				bes. Ufer- strukturen	Gew. Rand- streifen
Typ 5	8	62,5%	50,0%	37,5%	25,0%	0,0%	50,0%	0,0%	12,5%	0,0%
Typ 9	20	20,0%	20,0%	10,0%	5,0%	10,0%	40,0%	10,0%	25,0%	20,0%
Тур 15	1	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	0,0%	100,0%	100,0%
MW	29	34,5%	31,0%	20,7%	13,8%	10,3%	44,8%	6,9%	24,1%	17,2%

Modul 1b: Schlüsselhabitate

Zielerreichungsquote

	n	Psammopela	l Akal	Xylal	СРОМ	Phytal
Typ 5	12	16,7%	Keine Zielvorgabe	0,0%	Keine Zielvorgabe	25,0%
Typ 9	36	36,1%	Keine Zielvorgabe	36,1%	Keine Zielvorgabe	5,6%
Тур 15	3	33,3%	33,3%	0,0%	Keine Zielvorgabe	66,7%
MW	51	29,7%	/	25,5%	/	10,6%

Verbesserungs<u>quote</u>

	n	Psammopelal	Akal	Xylal	СРОМ	Phytal
Typ 5	12	33,3%	41,7%	33,3%	25,0%	16,7%
Typ 9	36	38,9%	38,9%	16,7%	22,2%	41,7%
Тур 15	3	33,3%	0,0%	33,3%	0,0%	33,3%
MW	51	37,3%	37,3%	21,6%	21,6%	35,3%

Modul 2a: Ökologische Bewertung

Zielerreichungsquote

	n	MMI	Fauna Index	EPT- Taxa	Zonierung	Rheo/EPT CBO/T
Typ 5	10	50,0%	50,0%	40,0%	40,0%	50,0%
Typ 9	19	5,3%	10,5%	10,5%	0,0%	52,7%
Тур 15	3	66,7%	33,3%	0,0%	100,0%	66,7%
MW	32	25,0%	25,0%	18,8%	21,9%	53,1%

Verbesserungsquote

	n	MMI	Fauna Index	EPT- Taxa	Zonierung	Rheo/EPT CBO/T	+2 Taxa
Typ 5	10	30,0%	30,0%	46,2%	40,0%	40,0%	50,0%
Typ 9	19	36,8%	57,9%	36,8%	36,8%	47,4%	26,3%
Typ 15	3	33,3%	0,0%	66,7%	66,7%	100,0%	33,3%
MW	32	34,4%	43,8%	42,6%	40,6%	50,0%	34,4%

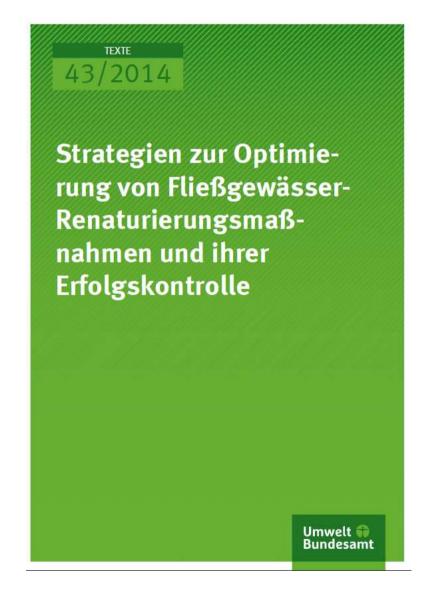
Modul 2a: Ökologische Bewertung

Zielerreichungsquote

	n	Gesamt- bewertung	Arten- /Gilden- inventar	Arten- abundanz/ Gilden- verteilung		Migration	Fischregion	Dominante Arten
Typ 5	6	33,3%	50,0%	16,7%	50,0%	16,7%	33,3%	33,3%
Typ 9	21	33,3%	52,4%	4,8%	61,9%	9,5%	66,7%	14,3%
Тур 15	3	0,0%	100,0%	0,0%	0,0%	0,0%	100,0%	0,0%
MW	30	30,0%	56,7%	6,7%	53,3%	10,0%	63,3%	16,7%

Verbesserungsquote

	n	Gesamt- bewertung	Arten- /Gilden- inventar	Arten- abundanz/ Gilden- verteilung	Alters- struktur	Migration	Fischregion	Dominante Arten
Typ 5	6	33,3%	33,3%	16,7%	16,7%	16,7%	0,0%	0,0%
Typ 9	21	71,4%	38,1%	38,1%	47,6%	0,0%	19,1%	23,8%
Тур 15	3	100,0%	33,3%	0,0%	100,0%	0,0%	33,3%	33,3%
MW	30	66,7%	36,7%	30,0%	46,7%	3,3%	16,7%	20,0%



Zusammenfassung

- Das Bewertungssystem bewertet die Struktur und die Biologie nach allgemeinen Standards
- Die mesoskaligen Strukturen (Laufstrukturen, Längsprofil) wurden größtenteils naturnah umgebaut
- Die kleinskaligen Strukturen (Schlüsselhabitate) zeigen bei einem Großteil der Maßnahmen noch erheblichen Abstand zum Ziel
- Besonders die Substratdiversität und –zusammensetzung entspricht nicht der des guten ökologischen Zustands
- MZB und Fische spiegeln die defizitäre Substratdiversität wider
- Die Zielerreichungsquote ist schwächer als die Verbesserungsquote → es gibt Verbesserungen in den Metrics aber der gute ökologische Zustand wird (noch) nicht erreicht

Fazit: Methode zur Erfolgskontrolle

Anwendung lohnt sich!

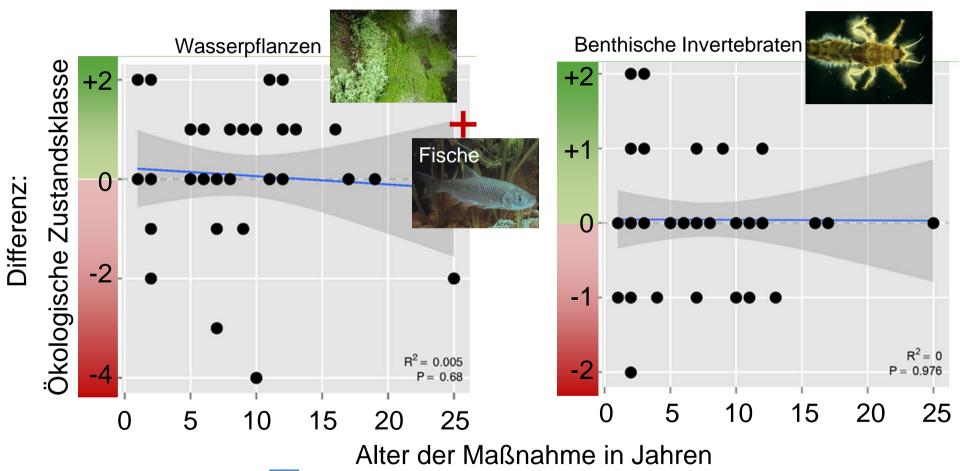
https://www.umweltbundesamt.de/publikationen/ strategien-zur-optimierung-von-fliessgewaesser UNIVERSITÄT

DUISBURG

SENCKENBERG

world of biodiversity

Kontakt: Andrea.Sundermann@senckenberg.de

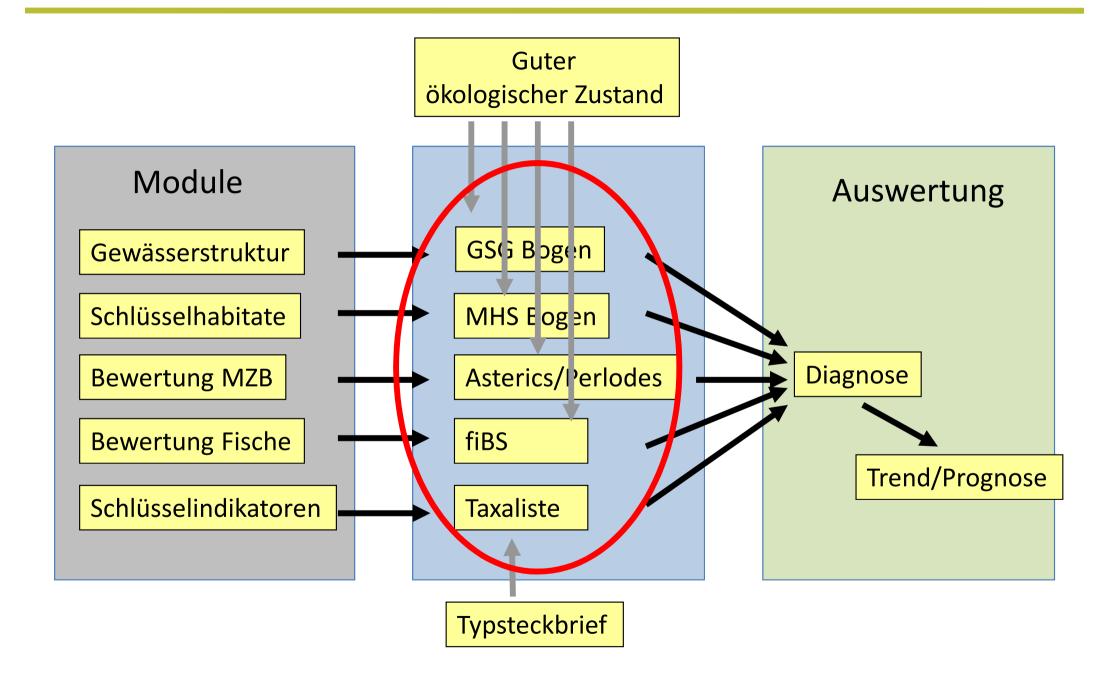


Renaturierung: Reaktion der Organismen

Erste positive Tendenzen: mehr Arten

Modul 2a: Ökologische Bewertung

Verbesserungsquote



	n	/Holzfresser	Zerkleinerer	Weidegänger/ Filtrierer	Akal/Psamm al-Besiedler		Phytal- Besiedler
Typ 5	10	30,0%	50,0%	60,0%	20,0%	60,0%	50,0%
Typ 9	19	10,5%	31,6%	42,1%	31,6%	52,6%	19,4%
Тур 15	3	33,3%	66,7%	100,0%	66,7%		33,3%
gew. MW	32	18,7%	40,6%	53,1%	31,3%	55,2%	30,3%

Verbesserungsquote

	n	n Abweichung Leit vom FRI in		Community- Dominance- Index
Typ 5	6	16,7%	0,0%	
Typ 9	21	51,1%	28,6%	76,2%
Тур 15	3	66,7%	33,3%	66,7%
gew. MW	30	45,8%	23,4%	75,0%

